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Section 1 introduction and Summary 

7. I Background 
High explosive enclosed by a metal case qualitatively describes an essential 
component of high energy systems of importance to the Department of Energy. 
Detonation of the high explosive causes intense transient pressure loading of the 
metal following arrival of normal or obliquely incident explosive detonation wave. 
Subsequent expansion and deformation of the metal case leads to eventual rupture 
and the opening of fractures and fissures. Details of the rupture process are critical to 
performance'of the system. 

Consequently, it is essential that the material and kinematic issues governing the 
processes of dynamic loading and subsequent failure of an explosive-metal case 
component within a functioning system be adequately understood. Among the 
reasons are to quantify existing performance, characterize potential degradation of 
performance resulting from system aging, and optimizing or maintaining system 
performance through implementation of structural or material changes. 

The physical and engineering issues underlying this dynamic response and failure 
phenomena are not adequately understood. The purpose of the present program is to 
identify the key issues and develop theoretical, computational and experimental 
models needed to achieve a satisfactory theoretical and analysis framework for 
analysis of metal case failure in the explosive environment. 

Specific tasks within the present program include: 

1. Models and theories currently being pursued based on physical principles 0: 
both the statistical fkagmentation concepts of Mott and the energy-based 
concept of others show promise of providing the analytic and computational 
methodology capable of predicting explosion-induced fracture and 
fragmentation of metal components. Experimental studies initiated in the 
earlier effort offer promise to provide critical test data for validation. The 
present task shall involve the further refinement and development of the 
dynamic failure and fragmentation models and theories, and the concomitant 
application and validation of these models and theories to experimental test 
data with the focus of providing the analytic methodology sought in the 
programmatic effort. 

2. Stand-alone engineering algorithms and large-scale computer codes will 
constitute the calculational methodology developed to simulate and analyze 
the operational system response of metal components in explosive-loading 
environments. This task will pursue the preparation and implementation of 
the models and theories of dynamic fiagmentation above to the status of 
engineering and computational analysis tools. The engineering and computer 
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analysis tools pursued will also be tested against experimental fracture and 
fragmentation data emerging from the program effort. 

1.2 Summary 
Two outwardly different theories of the dynamic €fagmentation of rapidly expanding 
metal shells have received sizable attention in recent years. First is the statistics- 
based theory of Mott (1 947) developed in the 1940’s. Second is an energy-based 
theory pursued in the 1980’s (Grady et al. 1984; Kipp and Grady 1985). The 
applicability of both theories to key aspects of the present dynamic fragmentation 
application is shown here through comparison with the extensive expanding ring 
fragmentation experiments of Olsen (2001). 

The two theoretical approaches are then merged to provide an extended statistical and 
energy-based theory of fragmentation for the one-dimensional expanding-ring-like 
fragmentation problem. This extended theoretical development is one of the principal 
advances achieved within the present reporting period. 

Further key advances in the one-dimensional theory include: 

1. A general development of the analytic description of the distribution in 
fragment lengths. 

2. A theoretical description and analytic representation of opening separation 
(crack opening displacement) of fractures during continued expansion 
following fragmentation. 

3. Theoretical clarification of strain to fracture in the one-dimensional 
fragmentation problem. 

4. A statistical characterization accounting for exclusion and impingement 
associated with the random activation of fractures and the interaction of 
fracture stress release. 

The statistical and energy-based fragmentation theory is extended to the 
two-dimensional arbitrary expansion and fragmentation of a metal sheet. This 
extension draws heavily on the fracture and fragmentation relations developed in the 
one-dimensional theory. Assumptions necessary to the extension are nonetheless 
sensible and predictions are in reasonable accord with available experimental results. 

Specific results include: 

1. Analytic predictions of average fragment area and aspect ratio based on the 
principal in-plane stretching rates and the material fragmentation toughness. 

2. Analytic expressions for statistical distributions in fragment area and aspect 
ratio. 
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3. Theoretical description of crack opening spacing dependence on in-plane 
expansion. 

A full fiagmentation theory of explosively expanding metal shells requires a model 
for the local strain at fracture onset. In this effort a load maximum failure criterion is 
explored and extended to the full biaxial extension of an expanding metal sheet. This 
failure model is not inconsistent with available data. A dependence of the failure 
model on stress traxiality is not included but could be incorporated later if warranted. 

Preliminary engineering models based on the theoretical efforts of this study have 
also been pursued. The engineering models are written in the framework of a 
MathCAD mathematical analysis program. Two modeling approaches have been 
developed: 

1. Failure and fiagmentation of an expanding metal shell element based on 
Gurney theory methods in determining the shell loading conditions. 

2. Failure and fragmentation of an expanding metal shell element based on the 
post processing of a computational simulation of the shell loading event. 

Application of the engineering models to representative problems is provided. In 
particular, preliminary comparisons are made with Sandia National Laboratories 
fiagmentation experiments on U6N tubes. 
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Section 2 Comparisons of Energy-Based and Mott’s 
Statistics-Based Theories of Fragmentation 

Two theories appropriate to the dynamic fragmentation of rapidly expanding metal 
shells have emerged. Both theories have attractive features and demonstrate 
predictive abilities with available experimental data. As posed, the two theories are 
based on strikingly different premises and do not, on the surface, appear compatible. 
The present effort is intended to demonstrate that, with very modest reinterpretation 
of the initial theoretical premises, the theories do merge providing a richer and more 
predictive extended theory. 

The section starts by outlining both theories as initially presented. Mott’s statistics- 
based theory, as laid out in the early research reports (Mott 1943), and in the later 
open-literature publication (Mott 1947), is described first. This description also 
includes analytic representations of the Mott statistical distribution developed later 
(Grady 1981; Grady 2001). The energy-based theory first discussed by Grady (1980) 
but, for the present application, more appropriately described in Grady et al. (1984) 
and Kipp and Grady (1 985), is then presented. In both theoretical developments 
experimental results are described supporting plausibility of the theories. 

The section closes with the new theoretical developments which bring Mott’s 
statistical and the energy-based approach together into a broader theory of dynamic 
fragment at ion. 

2. I Mott 3 Statistics-Based Fragmentation Theory 
Three technical reports published within the first half of 1943 reveal the maturing of 
Mott’s understanding of the dynamic fragmentation process and in the last of these 
reports a statistical theory of fragmentation emerges which is still today the leading 
theory available. The theory was published several years later in the open literature 
(Mott 1947). The theoretical development is summarized in the following 
subsections including analytic extensions of the Mott theory developed by Grady 
(1 98 1). 

2.1 .I The Mott Cylinder 
The Mott theory of fragmentation is most readily developed by first introducing the 
Mott cylinder (or ring) as illustrated in Figure 1. The Mott cylinder is an idealization 
of an expanding cylindrical shell whose outward motion was imparted by some radial 
impulse. Mott was personally focused on the natural fiagmentation of exploding pipe 
bombs. The model is certainly applicable to other test conditions such as 
magnetically driven metal rings. Experiments using the latter expanding ring method 
will be examined here in evaluating the two fragmentation theories. 
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Regions Stress-Relieved 
After Mott-Wave Passage  

Regions Stretching 
At Constant Strain Rate 

Regions Stress-Relieved 
After Mott-Wave Passage  

Regions Stretching 
At Constant Strain Rate 

Figure 1. Expanding Mott cylinder illustrating statistical fracture and tension 
stress release waves. 
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An explosively-driven expanding metal cylinder is a decidedly multidimensional 
fragmentation event, and fragmentation of the Mott cylinder is only an approximation 
to this event. Specifically, the theory attempts to capture the characteristic 
circumferential spacing of fiactures and the statistical distribution in these spacings. 
It is not intended to account for the axial propagation and interaction of cracks within 
a finite length cylinder. 

Thus, the Mott cylinder is an expanding metal body with radial velocity u and radius r 
at the time when multiple fracture and breakup of the cylinder proceeds. Just 
preceding breakup, the cylinder body is in circumferential tension undergoing 
uniform circumferential stretching at a rate of i = u/r . 

'Mott proposed that fiagmentation proceeded through the random spatial andtemporal 
occurrence of fiactures. From sites of fiacture, release waves propagate away 
relieving the tension within the cylinder and precluding the need for further fiacture 
within regions encompassed by tension release waves. Fragmentation is complete 
when fracture-induced release waves subsume the entire cylinder. 

Therefore, within the model for dynamic fiagmentation proposed by Mott, two 
physical issues need to be addressed. First is the issue of when and where fiactures 
occur on the Mott cylinder. Second is the propagation of tensile release waves (Mott 
waves) away fiom the sites of fkacture. Each will be addressed in turn. 

2.1.2 Mott Fracture Activation 

Mott put forth arguments that energy dissipation was not of consequence in the 
fiacture process and proposed instead a statistical strain-to-fkacture criterion. Mott 
assumed that fractures occurred at random around the circumference of the cylinder at 
a fiequency governed by a strain dependent hazard function h ( ~ )  (Hahn and Shapiro 
1967) such that I z ( E ) ~ E  provided the statistical number of fiactures occurring within 
a unit length of the cylinder circumference in the strain interval d ~ .  It is important to 
recognize that Mott considered h ( ~ )  to be an independently measurable property of 
the material. An alternative and complementary application of the hazard function 
yields, 

for the cumulative probability of fiacture failure in a tensile test of a specimen of 
length L. Mott in fact used tensile test data on steels to estimate parameters in the 
function h ( ~ )  (Mott 1947). 

Mott expected h ( ~ )  to be a strongly increasing function of strain and suggested both 
an exponential and a power-law function. The former leads to Gumbel statistics 
while the latter applies to Weibull statistics (Hahn and Shapiro 1967). Mott pursued 
the exponential hazard function. Here the two-parameter power-law hazard function, 
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n-l 

h (&)=E(z )  0 0  , 

will be used. Analysis suggests little difference in the behavior of the two functional 
forms. For sensibly large n the parameter 0 is the expected value of the strain-to- 
fracture of a unit length from Equation (1) while 0 / n is the standard deviation. 

2.1.3 Mott Tension Release 
Statistical fiacture in the Mott cylinder can now be generally addressed. The 
functional, 

is written. In Equation (3) h(q)dq is identified as the statistical number of f iackes 
activated on the Mott cylinder at a strain 7 within interval dq . The function 
d(E - q)  is the distance traveled by a tensile stress release wave over the strain 
interval E - q . (Since strain rate is assumed to be constant over the duration of the 
fracture process, strain and time are synonymous through E = it .) 

In Equation (3) F(E)  is readily seen to provide the fiaction of the Mott cylinder 
which has been encompassed by stress release waves emanating fiom sites of fracture 
at a current strain E .  The equation also determines the fiaction of the cylinder in 
which further fracture is precluded. A form of Equation (3) was derived by Mott in 
the original 1943 reports. 

An inspection of Equation (3) reveals that the function F(E)  will exceed unity at 
sufficiently large strain. This non-physical result is a consequence of not accounting 
for two factors in the fracture activation and stress wave propagation process. First, 
the fracture activation function h ( E )  does not exclude the activation of M e r  
fractures within regions previously stress relieved. Second, the stress release function 
d ( ~ )  does not account for the impingement and the overlap of opposing release 
waves from separate neighboring fractures. Thus Equation (3) is only sensible for a 
dilute number of fiactures early in the fracture and release process. 

To account for fracture exclusion and wave impingement in the statistically random 
Mott model, a statistical method introduced by Johnson and Meld (1 939) will be used 
(Grady 198 1). Random exclusion and impingement is accounted for through the 
relation, 

D(E)  = 1 - e-F(f) , (4) 

providing the fiaction of the Mott cylinder encompassed by fracture stress release 
waves at any strain E .  The h c t i o n  D(E)  does approach unity as E becomes large. 
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2.1.4 Fracture Stress Release Function 

Functional form of the stress release function d(E) has not been specified. There are 
several possibilities. Ifthe expanding Mott cylinder is elastic at the time of hcture  
then a constant elastic release wave velocity governed by the elastic modulus is 
sensible. Mott, however, considered an expanding ductile metal cylinder and 
assumed a material on the tensile yield surface governed by a constant flow stress Y. 
Instantaneous fracture and rigid-ideally-plastic constitutive response leads to the 
stress release function (Mott 1947; Grady 2001), 

d(E) = ,/ZE pB2 ( 5 )  

where E = it. 

2.1.5 Fracture Number Prediction 

Given explicit forms for the fracture activation function in Equation (2) and the stress 
release function in Equation (5), statistical predictions of the number of fracture (and 
fragments) produced in the breakup of the Mott cylinder can be obtained. Accounting 
for the stress relieved fraction of the cylinder D(E) the number of fractures at a strain 
E is given by, 

Completing the integral in Equation (3) to first obtain D(E) through Equation (4), 
integration of Equation (6) to infinite strain yields [Grady, 20011, 

for the number of fractures per unit length, where, 

For reasonably large N the constant P,, approaches one and the power approached 
one-half leading to a linear dependence on the expansion strain rate. The fracture 
number is determined by the standard deviation 
frequency function h ( ~ )  as was noted by Mott (1 947). 

/n of the power-law fracture 

The temporal history of fractures appearing on the Mott cylinder can be determined 
by retaining the strain dependence of the integral in Equation (6). 
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The random placement of fractures on the Mott cylinder both in space and in time as 
assumed in the Mott model allows for calculation of the statistical distribution of 
fracture spacing (fragment lengths). This calculation was performed graphically by 
Mott (1947) and has been completed by analytic methods (Grady 1981; Grady 2001) 
only for the special case of n = 1 in the power-law fracture frequency function. The 
calculated analytic distribution in fracture spacing by this analytic method is, 

2 113 where p = 3r(2/3) and x, = (3crY/2pB ) 
the functional form of the fracture frequency function h ( ~ )  is not known but 
comparison of the analytic distribution fiom Equation (9) and the graphic distribution 
determined by Mott (1 947) suggests that this sensitivity is probably small. Both the 
analytic and the graphical distribution are compared in Figure 2. In summary, the 
statistics-based theory of dynamic fragmentation developed in the seminal study of 
Mott provides a physically plausible and intellectually satisfying description of the 
fragmentation process. Within the one-dimensional model of the Mott cylinder the 
theory is fully predictive, providing the average fiagment size and the distribution 
about the average, as well as the statistical temporal history of fracture and the strain- 
to-fracture. Comparisons of the Mott theory with experimental data will be 
considered shortly. 

. The sensitivity of the distribution to 

2.2 Energy-Based Fragmentation Theory 
A theory of dynamic fragmentation based on starkly different initial assumptions has 
been pursued by Grady et al. (1984), and Kipp and Grady (1985). Again, one- 
dimensional fracture and fragmentation on the Mott cylinder provides the model for 
development of the theory. The fundamental difference in the two theories is that 
Mott assumed energy dissipated in the fracture process was not of concern and that 
fracture at a site on the cylinder would be effectively instantaneous. In contrast, 
energy dissipation and an associated fracture delay time lies at the heart of the 
energy-based fragmentation theory. 

2.2.1 The Fracture Calculation 
Formulation of the energy-based fiagmentation theory on the expanding ductile Mott 
cylinder proceeds by extending the analysis developed by Mott to calculate the time 
history of release waves (Mott waves) emanating from sites of fracture. The 
extension of the analysis proceeds by considering, rather than instantaneous fracture, 
a fracture resistance which reduces fiom the flow stress Y to zero as a crack-opening- 
displacement parameter y goes from zero to some critical crack opening displacement 
yc . An assumption of linear reduction of the fracture resistance leads then to a 
fracture energy dissipation r = Yy, / 2 .  The treatment is quite analogous to the crack- 
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opening-displacement models of Dougdale (1 960) and Barrenblatt (1 962) in 
consideration of quasistatic fracture resistance. Momentum balance for the rigid 
ideally plastic problem leads to the following differential expression for the position x 
of the Mott release wave (Kipp and Grady 1985), 

. dx Y2 p&X-=-y , 
dt 2 r  

while motion of the crack opening displacement gives, 

-&x , dY -- 
dt 

. The coupled equations are readily solved yielding, 

1 Y2 
12 pr x ( t )  = -- t2 7 

for the motion of the Mott release wave while the crack opening displacement over 
0 I y 5 y ,  is given by, 

1 &Y2 t3 y( t )  = -- 
36 pr 

The time to fracture is determined by the time for the crack opening displacement to 
achieve y ,  and is calculated to be, 

t,= (7z’jlD - 

Over the time t, the Mott release wave travels a distance from the site of fracture, 

x c = ( 3 ) ’ ” .  
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Figure 2. Comparison of the graphic and the analytic solution for the Mott 
distribution of fragment lengths. 
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2.2.2 Fragment Size and Fragmentation Toughness 

The distance xc propagated by the Mott release wave determines the minimum 
spacing of separate fractures permitting fkacture completion without interaction of 
release waves. The theory assumes that the nominal hgment length is given by 
twice the distance xc or, 

The fracture resistance r is considered to be a property of the material characterizing 
the dissipation in the fracture growth process. It is possible under certain failure 
modes to estimate the fracture resistance r from other material properties [e.g. Kipp 
and Grady, 1985; Grady, 19931. Fracture toughness is the property commonly used 
to characterize the static (and dynamic) fracture properties of metals. Thus, it is 
sensible in the present development to define a property with the dimensions of 
fracture toughness through the relation of linear elastic fracture mechanics relating 
fracture strain energy release and fkacture toughness. Namely, 

where E is the elastic modulus. The property K, will be identified as the 
fragmentation toughness of the metal and will not presume any relationship to the 
clearly defined static fracture toughness. 

The expression for the characteristic fracture spacing fkom Equation (1 6)  then 
becomes, 

The energy-based theory does not address the issue of the statistical distribution of 
fragment sizes. It is assumed that Equation (1 8) provides an average fkagment size 
and that the fragment number per unit length is provided by the inverse of Equation 
( W ,  or, 

Equation (1 9) provides the energy-based spatial fracture frequency prediction to be 
compared with Equation (7) of the Mott statistical theory. 
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2.3 Comparisons With Experiment 

2.3.1 Experimental Fragmentation Studies 
A range of diverse experimental fragmentation investigations could be used, and in 
fact has been used, to explore the predictive abilities of Mott’s statistics-based theory 
and the more recent energy-based fragmentation theory. Here consideration will be 
restricted to a recent quite thorough study of dynamic fragmentation of magnetically 
driven uranium 6% niobium (U6N) metal rings (Olsen 2001). The experimental 
geometry nicely replicates the fragmentation model assumed by Mott and provides 
data directly comparable with the theoretical predictions. 

In this work U6N metal rings approximately 30 mrn in diameter and with a 0.75-mm 
square cross section were accelerated by a pulsed magnetic field to radial velocities of 
50-300 d s .  Actual acceleration is provided by an aluminum pusher ring which 
accommodates most of the induced electric current. The aluminum ring is arrested 
prior to fiagmentation allowing free flight of the U6N ring preceding breakup. 

Radial velocity history of the U6N rings was measured with time-resolved velocity 
interferometery or VISAR (Barker and Hollenbach 1972). Measured deceleration of 
the freely expanding ring prior to fragmentation was used to calculate a tensile flow 
stress of nominally 1 GPa. Fragmentation occurred at an expansion of about 30%. 

In each test the number of fragments produced (equivalently, the number of fractures) 
was determined. Fragment number versus the expansion velocity of fiagmentation 
are shown for the series of U6N expanding ring experiment in Figure 3. The 
anomalous point high on the graph is the consequence of one test on an overaged 
U6N sample. A least squares fit, excluding the one anomalous point, provided the 
power law representation of the data shown in Figure 3. In one representative test 
each fragment was separately weighed and the cumulative fragment size distribution * 

shown in Figure 4 was obtained. 
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Figure 3. Fragment number versus expansion velocity at fracture for U6N 
expanding ring fragmentation tests. 
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2.3.2 Comparisons with the Mott Statistics-Based Theory 

Weibull parameters CT and n necessary to predictions of the fragment number and 
dependence on velocity are not available for the U6N material tested. Hence only 
sensibility of the experimental results can be examined. The observed power law 
dependence of fragment number on expansion velocity close to two-thirds indicates 
that the Weibull parameter n in Equation (7) is very close to unity. Assuming n = 1 , 
the second Weibull parameter is calculated to be CT = 7.7 x 10” / m  . The standard 
deviation in strain to fracture calculated from Equation (1) is a/L . Considering 
specimens of length of order of one centimeter, the nominal length of fragments in 
the ring tests, a scatter in strain to hcture  of approximately lo-’ or about 3% of the 
observed 0.30 strain to fracture is calculated. Thus Weibull parameters within the 
Mott statistical theory for the fragmentation of U6N rings are plausible. 

Prediction of the distribution in fracture spacing is also a facet of Mott’s statistical 
theory. Comparison of both the graphic distribution generated by Mott and the 
analytic distribution from Equation (9) both displayed in Figure 2 are compared with 
the distribution determined experimentally in Figure 4. The observed distribution and 
the theoretical distributions based on the Mott statistical fracture theory are in 
reasonable accord. 

2.3.3 Comparisons with the Energy-Based Theory 

The energy-based fragmentation theory directly predicts &om Equation (1 9) a two- 
thirds power dependence of fragment number on strain rate or, equivalently, the 
expansion velocity at fiacture. A two-thirds power dependence curve is compared 
with the data and the experimental fit in Figure 3 and shows sensible agreement with 
the data. 

To further test the energy-based theory the fragmentation toughness is calculated 
through Equation (1 9) for each experiment. This representation is shown in Figure 5 .  
A value of Kf in excess of 60 MPa - m’l’ determined fiom the fragmentation data is 
remarkably close to a static fracture toughness of approximately 90 - 1 10 MPa - m’/’ 
measured on similar U6N alloys. 

Other features observed in the U6N ring fragmentation experiments also attest to the 
importance of energy dissipation and finite fracture time in the dynamic fracture 
process. Inspection of fragments revealed fully developed necking regions-a 
signature of fractures which were enveloped with tensile release (Mott) waves and 
fracture growth arrested before full fracture and separation was achieved. 
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Figure 5. Dynamic fragmentation toughness calculated through theoretical 
relation relating fragment number, expansion rate and material toughness. 
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2.4 A Statistical and Energy-Based Theory of Fragmentation 
Clearly both Mott's statistical theory and the energy-based theory have features in 
accord with the results of the U6N expanding ring fragmentation experiments. 
Frequency, and in particular, statistical spacing, of fractures are consistent with 
predictions of the Mott theory. The favorable strain rate dependence and the very 
close agreement between static fracture toughness and the inferred dynamic 
toughness are, on the other hand, well predicted by the energy-based theory. It would 
seem that a broader theory encompassing concepts from both the statistics-based and 
the energy-based approaches is warranted. 

2.4.1 A Merging of Theories 
The statistical fragmentation theory of Mott is based on two functional properties 
characterizing response of the material in a dynamic fragmentation event. First is a 
strain-dependent fracture activation function h ( ~ )  which has been selected here of 
the power law form, 

n-1 

h(&)=n(E) 0 0  . 

Second is the difision-governed tensile release propagation b c t i o n  from sites of 
fiacture, 

Together the Mott theory yields the spatial fracture frequency fiom Equation (7), 

n/(2n+l) 

In contrast, the energy-based theory yields for the same spatial fracture fiequency, 

N = ( & ) .  v3 

The theories are equivalent if the Weibull constants have the unique values, 

n=1, 

and, 
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Thus, the requisites of the energy theory would uniquely constrain the Weibull 
parameters and the functional form of the fracture activation function of Mott's 
statistical theory. Equation (25) identifies a material-specific length scale u and 
requires, through Equation (20), that the fracture activation function be constrained to 
a constant h ( ~ )  = ho = u-' . 

The fracture activation statistical hazard function as was proposed by Mott (Equation 
(20)) and as constrained by the energy theory are illustrated in Figure 6. The function 
It (&) specifies fi-acture activation frequency as increasing plastic strain E is achieved. 
Thus, increasing expansion rates are required to achieve increasing levels of strain to 
fracture. 

Below the strain at which the two functions cross in Figure 6, the lower rate of 
fracture activation is provided by the rapidly increasing power-law expression for 
I z ( E ) .  Above the strain the constant expression for h ( ~ )  inferred from energy 
considerations provides the lesser rate of fracture activation. 

From the Mott statistical development outlined earlier the cumulative strain to 
fracture is calculated from the expression, 

W 

E/ = J(1- D (h ) )dq .  (26) 
0 

It is readily shown that the cumulative strain to fracture, E~ = C.Z&~(*~+*) ,  where an is 
a constant function of the material properties, increases with expansion rate i. . 
Thus, the comparison indicates that, with increasing expansion rate, a strain to 
fracture which exceeds the cross-over strain is eventually achieved. Fragmentation 
and the frequency of fracture become governed by fracture energy dissipation 
properties. 

This observation suggests a reinterpretation of the fracture activation functions. The 
rapidly increasing Mott function would, more appropriately, be the fiacture seeding 
function. This function characterizes the perturbations and defects in the body 
leading to fracture (the seeds of fracture) but does not necessarily specify the fracture 
activation process itself. Above the cross-over strain the constant energy-based 
function provides the fracture survival rate. Below the cross-over strain in the 
fracture seeding function limits the fracture activation and there is a one-to-one 
correspondence between fractures seeded and fractures activated. Above the cross- 
over strain, however, many fractures are initiated but energy requirements limit 
fracture survival and only a subset of fractures seeded achieve activation. 
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Figure 6. Graphical interpretation of fracture functions in the  merging of Mott 
statistics-based and energy-based fragmentation theories. 
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2.4.2 Strain to Fracture 

In the statistical theory of Mott both strain to fracture and fracture frequency are 
uniquely determined through the parameters 0 and n in the power-law fracture 
activation hnction. The theory of Mott, however, cannot also account for the two- 
thirds power dependence of the average fragment number on strain rate predicted by 
the energy-based theory, and also observed in the U6N expanding ring experiments. 

With the extended statistical energy-based theory, strain to fracture in addition to the 
statistical fragment size and strain-rate dependence features can be accounted for. 
Prediction is dependent on proper selection of the Mott fracture seeding function, 

and the energy governed fracture survival function, 

i r  
5Y’ 

h ( E )  = ho z -- 

where ho is provided by Equation (25). The cumulative number n ( ~ )  , or rate of 
fracture seeding and fracture survival functions (the integral of Equation (27) and 
Equation (28) are plotted in Figure 7 (compare with Figure 6)). 

The new parameter revealed in Figure 7 is the constant of integration E, of the 
fracture survival function. The Mott fracture activation function is determined by the 
solid segments of both functions. The theory has acquired an additional material 
parameter but now supports the prediction of strain to fracture in addition to statistical 
fracture frequency and spacing distribution. At fracture strain rates into the energy- 
governed fragmentation regime it is readily shown that the statistical strain to fracture 
from Equation (26) is, 

E/ = E, + ap2J3 , 

where a, is calculated through Equation (26) from the energy-based Mott fracture 
properties . 

This broader interpretation of fragmentation merges both the statistical principals of 
Mott and the fracture energy requirements of the energy-based theory. A wider set of 
properties characterizing the solid body of interests is required, however. The Mott 
seeding function characterizes the defect state of the body governing the strain- 
dependent nucleation of potential fractures. Weibull parameters in the two-parameter 
power law function serve this purpose in the present development. The Mott survival 
function incorporates the energy dissipation, or fragmentation toughness, properties 
of the material. Further material properties and supporting theory are needed to 
establish the strain to fracture onset. 
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2.4.3 Supporting Calculations 
Partial support for the extended theory is provided by a one-dimensional 
computational simulation of the Mott fragmentation process performed by Kipp and 
Grady (1 986). At that time it was recognized that interplay between dynamics of the 
fragmentation event and the population of flaws seeding the multiple fracture process 
could lead to conditions in which flaw structure controlled the extent of fragmentation 
on one hand while energy limitations controlled fragmentation on the other. A 
rationale for analytically merging the range of behaviors was not recognized, 
however. 

The following computer simulations of dynamic fragmentation were performed to 
- support experimental.fragmenting ring studies performed at that time (Grady et al. 

1984). A one-dimensional finite difference wave code was used to calculate the 
response of an aluminum rod or wire 0.1 m in length stretching plastically at a flow 
stress Y = 100 MPa and at a uniform stretching rate 12 = 104/s. Fracture sites were 
introduced randomly in time according to a constant nucleation rate parameter 
h ( ~ )  = Jzo and randomly positioned within the length of the rod. The nucleation rate 
Jzo was the only parameter varied over the series of calculations. When fracture was 
nucleated at a computational cell, stress in that cell was relaxed from the flow stress Y 
to zero as the cell distended such that plastic fracture energy within that cell of 

= 2 x lo4 J/m2 was dissipated. The number of fragments produced as the 
nucleation rate ho was varied over approximately one order of magnitude was 
determined from the simulations and are shown in Figure 8. Although not directly 
duplicating the conditions of Figure 6, the relationship is apparent. 

At reduced nucleation rates every fracture nucleation site grows to full fracture. The 
number of fractures and the corresponding characteristic fragment size is thus 
governed fully by the flaw structure and the fracture nucleation (seeding) function. 
As the nucleation rate is increased the number of nucleated fracture sites which fail to 
grow to completion correspondingly increases. At the highest nucleation rates the 
number of fragments becomes independent of the number of fracture sites nucleated 
and is determined strictly by the fracture energy I? resisting fracture growth. The 
energy governed constant fracture survival rate, ho z Yk / 5r , identified in Figure 8, 
is sensibly consistent with the expected transition from flaw limited to energy-limited 
fragmentation. 

A cumulative fragment length distribution from one computational simulation is 
compared with the predicted graphic and analytic Mott distribution from Figure 2 in 
Figure 9. The computational distribution is fully consistent with the statistical theory. 
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2.4.4 The Fracture Physics 

Of the properties required to characterize the response of the expanding metal 
cylinder, the fracture energy captured through the property r is probably the most 
apparent. That some degree of work must be expended, and some fracture energy 
overcome, in opening the cracks delineating the fragment boundaries produced in the 
fragmentation event is inherently reasonable. Less apparent are details of the 
deformation mechanisms occurring in the fracture growth and dissipation process. 
Plastic necking, adiabatic shearing and ductile fracture are all viable mechanisms. It 
is likely that all of the above mentioned mechanisms will contribute to some degree. 

Considerably less intuitive are the material features responsible for onset of fracture; 
analytically expressed in this development by.the Mott seeding h c t i o n  and 
quantified by the Weibull parameters in the power-law hazard function. In most 
events leading to the dynamic expansion and fragmentation of ductile metal rings and 
shells a degree of stable plastic stretching is accommodated before fracture occurs. 
This deformation is most likely a consequence of stabilizing plastic hardening of the 
component metal. As plastic hardening saturates, however, continued stretching and 
thinning becomes inherently unstable and susceptible to perturbations in the 
deformation. Sources of these perturbations are far fkom certain. Granularity of the 
device metal is a reasonable source of deformation perturbations. Perturbations from 
metal granularity leading to fracture would suggest sensitivity of the fragmentation 
process (particularly the effective strain to fracture) to grain size and related material 
issues. 

There are also convincing indications that surface features, either inherent or induced, 
play a role in the perturbations seeding fiacture onset. Imperfections in metal- 
explosive interfaces leading to deformation perturbation as detonation-induced shock 
waves are coupled into the metal system must also be considered. 

2.5 Further Theory and Analysis 
In this section some final theoretical issues are addressed before moving on to the 
two-dimensional fragmentation of an expanding surface. First, the statistical 
treatment of the interaction of multiple fractures was not treated in the original work 
of Mott (1 947). This part of the theory has application to both the one- and two- 
dimensional fragmentation problem and is considered in further detail in this section. 
The analytic determination of statistical fragment size distributions from the statistical 
theory has been performed for specific Mott fracture activation and growth laws. 
This development involves analytic details which are not readily transparent. Here, a 
more general development of the size distribution relations is developed which 
provides a clearer outline of the procedures. Lastly, after completion of fracture, 
continued expansion of the fragments results in statistical distribution of opening 
cracks and the associated crack-opening displacement. An analysis is presented 
which provides an analytic statistical description of the crack opening displacement 
for the one-dimensional expanding Mott cylinder. 
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2.5.1 The Statistical Interaction of Fractures 
The statistical approach to the treatment of the interaction of fractures in the dynamic 
fragmentation of a body was outlined in an earlier section. In the present section the 
issue is discussed further and expanded on. 

The activation and subsequent stress release of fractures initiated as a consequence of 
the tensile stretching of a ductile metal shell is illustrated schematically in Figure 10. 
The Mott cylinder considered previously illustrates the uniform expansion and one- 
dimensional (circumferential) fracture of a ring or cylinder. The biaxially stretching 
surface, on the other hand, depicts the two-dimensional (in-plane) fracture of the 
expanding surface. 

In the Mott statistical theory of fragmentation a function h ( E )  characterizes the rate 
of activation of fractures in the unruptured stretching plastic body. It is a material 
property which characterizes the initial or evolving defect structure of the material 
including interior and/or surface features. In energy-limited fragmentation h ( ~ )  
accounts for the fracture toughness or shear band energy which must be overcome to 
initiate a fracture. The material function h ( E )  cannot, however, account for the 
interaction of multiple fractures through stress relief (Mott) waves. The interaction of 
activated fractures and associated stress release regions is not explicitly treated in the 
theory. 

Similarly, the stress release growth function d ( ~ )  , which determines the distance or 
domain of the stress release region as a function of continued expansion or stretching 
E after fracture activation, is developed from the physics of wave propagation after a 
single fracture has occurred at some point. It does not account for the behavior when 
the stress-release zones from two nearby fractures begin to interact. 

Thus early in the fracture process when the number of fractures and associated release 
domains are sufficiently dilute such that the rate of fracture activation is sufficiently 
well represented by h ( E )  , and such that interactions between neighboring release 
zones are negligible, then the fraction of the region stress relieved by fracture is 
readily calculated from, 

4 

The fracture activation law does not exclude attempts to activate fractures within 
previously stress-relieved regions, for instance, as illustrated in Figure 1 1. 
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Figure I O .  lllustrates activation and subsequent stress release of multiple 
fractures in the dynamic expansion of ductile metal shells for the Mott cylinder 

(upper) and a biaxially expanding sheet. 
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Figure 1 I. Illustrates fracture activation exclusion and release wave 
impingement which must be accounted for in t h e  statistical fragmentation theory. 
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A seminal study in the statistical theory of accounting for exclusion and impingement 
in kinetic processes of materials was put forth by Johnson and Mehl(l939). The 
essential idea is illustrated in Figure 12 in which random size circles of area d.a, are 
placed at random on a region of unit size. The total projected area of i circles placed 
on the region is then the sum, 

A, = C d A x i  . 
i 

The actual area covered by the circles (the area fraction due to the unit size of the 
region), because of overlap of the circles, is the union of the i circles, 

A = UdA,, , 
i 

such that A < A,. In the random placement of an additional circle of area dA, , as 
shown in the Figure, the probability of any element of that circle falling outside of the 
area A is, 

P ( A ) = l - A  . (33) 

Consequently, the change in area A is just, 

dA= P(A)dA,=(l-A)dA,,  (34) 

which integrates to, 

A = 1 - . (35) 
The statistical process for dealing with extinction and impingement in kinetic 
processes was interpreted by Getis and Jackson (1971) in another way. In Figure 13 
circles placed at random on the region are assumed to come fkom a distribution of 
circles with expected value in radius of E ( r 2 ) .  The projected fraction is then, 

A, = nE(r2)n , (36) 

where n is the average number of circle centers per unit area of the region. Random 
placement of the circle centers is a Poisson point process in which case the 
probability of k circles covering a particular point in the region is, 
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Figure 12. The random placement of overlapping circles illustrates the  statistical 
model accounting for exclusion and impingement developed by Johnson and 

Mehl (1939). 
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Point 

Figure 13. The Getis and Jackson (I 971 ) statistical model proceeds from the 
Poisson probability of random circles covering an arbitrary point multiple times. 
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The fraction of the region covered is then, 

A = 1 - , (3 9) 
equivalent to the derivation of Johnson and Mehl(l939). 

This statistical theory is used to account for the exclusion of fracture activation and 
the impingement of stress release regions in the present development of the Mott 
fragmentation theory and accordingly the area fraction of stress release regions at any 
expansion E is, 

where F(E)  is provided by Equation (30). 

Application of the Johnson-Mehl or the Getis-Jackson statistical model to the Mott 
theory of the fragmentation of rapidly expanding ductile shells seems appropriate. 
The statistical model is particularly appropriate within the context of the Mott 
fragmentation model for the propagation of Mott stress release waves which excludes 
communication of signals of any type to regions ahead of the release waves. In 
application within metals with both elastic and plastic hardening properties 
applicability could probably be questioned. The approach is nonetheless physically 
attractive, leads to tractable analytic solutions for a number of features of the fracture 
process, and can be experimentally tested. 

2.5.2 The Development of Size Distribution in t h e  Mott Theory 
The Mott fragmentation theory, when combined with the statistical treatment of 
extinction and impingement, leads to continuous analytic predictions of feature of the 
fracture process such as number of fractures, fracture spacing, and cumulative strain, 
along with the time dependence of these features through the fracture process. A 
remarkable product of this theory is analytic relations for the statistical distributions 
for fragment size in the fragmentation event. Here we focus on the one-dimensional 
fragmentation event in which fragment size is unambiguously determined by the 
fragment length. An approach for determining size distributions in the two- 
dimensional fragmentation of an expanding area is pursued in the next section. These 
distribution relations for one-dimensional fragmentation were derived previously for 
several specific fracture activation and stress release growth laws. We here wish to 
develop the size distribution relation in general terms. This development, when not 
buried in the algebra of a specific analysis, provides insight into the workings of the 
theoretical model. 

First, the number density of fractures at any time, or strain ( E = i t  ), during the 
fracture process is given by, 
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c E 

N ( E )  = 1<1- D(q))h(q)dq = Je-F'O'h(q)dq . (41) 
0 0 

This fracture number relation is appropriate for one-dimensional fiacture on the 
circumference of the Mott cylinder as well as two-dimensional fracture of the 
expanding surface. 

As previously noted, fracture on the Mott cylinder (ring) uniquely characterizes the 
size of fragments. Namely, they are the arc lengths of the regions between fractures. 
Random fracture activation on the surface, however, does not uniquely constrain 
fiagment dimensions. Further assumptions concerning the extension and intersection 
of fractures are necessary before assessment of statistical fragment size can be 
accomplished. From here on focus is strictly on the one-dimensional fragmentation 
problem. 

When a fracture occurs at a point on the Mott cylinder two Mott release waves are 
created and propagate away from the fracture as illustrated in Figure 14. Therefore, 
ignoring exclusion and impingement, the number of Mott waves activated at strain E 
is, 

& 

N ( 4  = 2 Jh(77)dq - 
0 

To account for the collision and arrest of active Mott waves as illustrated in the 
figure, and to account for attempted activation within zones of stress release, 
Equation (42) is multiplied by the exclusion and impingement factor (1 - 0) , 

& c 

N ( E )  = 2(1- D(E)) lh(q)dq = 2e-F(E) Jh(q)dq , (43) 
0 0 

providing the number of active Mott waves at any strain E .  The rate of change of 
N ( E )  is then, 

which will be written as, 

-- dN(E) - I+(&) -N(&)I-(&) . 
dE (45) 

The rate of activation of Mott waves is provided by I+(&) while the fraction of active 
Mott waves arrested at strain E is given by I - (&).  

The effort now will focus on determining the number of Mott waves which activated 
at some earlier strain q and arrested at later strain E .  These waves will have all 
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propagated the same distance determined by the release domain growth law d(& - 77) . 
Therefore, let, 

SN, = I'(77)Sq 9 (46) 

specify the number of Mott waves activated at earlier strain q within increment Sq . 
Further, let SN be the number of the original SN, surviving at strain E > q . Then 
the number arrested at strain E within increment dE is just, 

d ( 6 N )  = -SNI-(E)dE . (47) 

Equations (44) and (45) provide I - (€)  = F'(E) and Equation (47) integrates to, 

SN = Ce-F(E) . (48) 

The constant of integration C is determined from the requirement SN = SN, at 
E = q and provides, 

77- (49) 6~ = I+ ( q ) e F ( ~ ) - F ( d 8  

Substituting from Equation (47) finally yields, 

d 2 N  = I+(q)r-(E)eF(T)-F(")d 77dE ¶ (50) 

for the number of Mott waves activated at strain q and arrested at strain E .  

The change of integration variables, 

U = & + q ,  V = & - q ,  

and integration over u provides, 

7dt F(V)-F(E)d P ( 4  a J 1+(77)1-(E)e 
U=E+IJ 

, (52) 

where x = d ( E  - q)  is the distance of Mott wave propagation from activation to arrest 
and p ( x )  is the statistical distribution in Mott propagation distances. 
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Figure 14. Activation and arrest of Mott stress release waves from points of 
fracture. 
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Equation (52) does not, however, provide the distribution in fragment size. As shown 
in Figure 15, Mott wave propagation distances combine in pairs to determine the 
length of a fragment. Thus the analytic expression for the statistical distribution in 
fragment lengths is, 

f W =  J P ( X , ) P ( X 2 ) 4 d x ,  9 

g=x, -x* 

where p ( x , )  and p(x2)  are the distributions provided in Equation (52) and the 
change of variables, 

x=x1+x2 , g=x1-x2 , 

complete the integration in Equation (53). 

(53) 

(54) 

For the special Mott problem in which the activation rate h ( ~ )  = ho , a constant, and 

Mott wave propagate according to d ( E )  = , / 2 Y ~ / p k ’  , Equation (53) provides the 
distribution, 

presented earlier. 

2.5.3 Distribution in Crack-Opening Displacement 
The expanding Mott cylinder undergoes multiple dynamic fractures which is 
statistically random in both the position of occurrence and the time of the fractures. 
Following fracture, the ring segments continue to expand outward and the crack- 
opening displacement at the points of fracture that separate the segments continues 
growing to accommodate the expansion and separation of the individual outwardly 
directed fragments. The dimension of the gaps between segments (the crack-opening 
displacement) and the statistical spread in the dimensions of these gaps at any time 
after fracture are the subject of the discussion and analysis in this section. 

The dynamics in the neighborhood of a single fracture are illustrated in Figure 16 and 
Figure 17. In Figure 16 the conditions of a uniform velocity gradient corresponding 
to the stretching rate E. prior to fkacture activation is depicted by the dashed line. 
After fracture Mott waves propagate away from the fracture separating regions in 
front of the waves and flowing plastically at stretching rate k , from rigid regions 
behind the waves moving at uniform velocity. The velocity profile at some time t 
after fracture is illustrated by the solid line in Figure 16. 
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Figure 15. Mott propagation distances combine in pairs to  determine fragment 
lengths. 
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Figure 16. Velocity profile in the stretching ring following fracture and determined 
by the Mott rigid-plastic wave solution. 
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Figure 17. Differential velocity of ring segments adjacent to fracture following 
completion of wave interaction. 
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Opposing Mott waves are activated at neighboring fractures to the right and to the left 
of the fracture depicted in the figures. The collision of two opposing Mott waves 
from adjacent fractures concludes velocity gradients and plastic flow within the 
intervening mass segment. This segment continues to move at a constant velocity 
equal to the velocity at the position of the collision point of the Mott waves. 

The segment to the left of the fracture moves away from the position of the initial 
fracture at a velocity Aul = x , i  while that to the right at a velocity Auz = xzB where 
x, and xz are the distances between the fracture point and the respective Mott wave 
collision points, as shown in Figure 17. The crack-opening displacement is then, 

w(t )  = (xl + X 2 ) i t  , (56) 

where t is the time after fracture. 

There is a characteristic time t, over which the statistical fracture process and 
interaction of propagating Mott waves proceeds. This characteristic time was derived 
from the Mott wave solution and provided by Equation (14). The time after fracture 
in Equation (56) is assumed to be sensibly larger than t, . 

At any time t there will be a statistical spread g(w) in the crack-opening 
displacement w provided by Equation (56). This comes about because the distances 
of stress release x, and xz determined by the propagation distances of Mott waves 
emanating from the fractures are themselves random. These same distances, when 
interpreted as the propagation distances between two adjacent fractures, determine the 
length of the intervening fiagment segment, and uniquely determine the statistical 
distribution in fragment lengths for the one-dimensional Mott fragmentation problem 
as developed previously (Equation (9) and Equation (55)). Although the distances x, 
and x, governing the crack-opening displacement in Equation (56) are on opposite 
sides of the fracture, the statistical development of g ( w )  is equivalent. Consequently 
the distribution g ( w )  , shown in Figure 18, and the fragment length distribution f ( x )  
from Equation (9) are related according to, 

The characteristic crack-opening displacement at time f is w,(t) = x,it where x, 
from the derivation of Equation (9) is x, = (3aY l 2 p i  ) 
for a z 5 r / Y  fkom Equation (25), x, z ( 5 r / 2 p i  ) . 

2 113 . Or, with the expression 
2 113 
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Figure 18. Distribution in crack-opening displacement. Displacement is 
normalized by characteristic crack-opening displacement do(f). 
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The distribution in crack-opening displacement is shown in Figure 18. Displacement 
is normalized by the characteristic crack-opening displacement wo(t) = x0&. Thus, 
fragment lengths and crack-opening displacement exhibit the same distribution in 
spread about the mean. Also the distribution in crack-opening does not depend on the 
time after fracture. 
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Section 3 Extension to Expanding Surface 
F rag men tat i on 

Development of a statistical energy-based theory of fragmentation of stretching 
ductile metals has been restricted to one-dimensional geometries such as expanding 
rings or, at best, a uniformly expanding cylinder where the theory is intended to 
describe the average and statistical spacing of axial fractures. In this section a theory 
will be pursued to describe the breakup of a biaxial expanding shell or membrane of 
ductile metal in which stretching rates in mutually orthogonal directions are each 
nonzero and are, in general, different. A specific case of interest, of course, is that of 
a stretching spherical shell segment in which the orthogonal stretching rates are the 

- same. 

3.1 Fracture Independence in Mutually Orthogonal 
Directions 

In the development of the present two-dimensional fragmentation theory it will be 
assumed that at a point on the surface of the expanding body orthogonal principal 
stretching directions can be determined and that fracture in the two principle 
directions are independent and governed by the conditions of the linear fiagmentation 
theory developed in the earlier sections. This approach is illustrated in Figure 19, 
where principal stretching directions on a surface are identified and a corresponding 
statistical distribution of fractures along the x and they stretching directions partition 
the surface into a statistical distribution of fragment areas. 

3.2 Fragment Size and Aspect Scales 
Within the energy governed region of the linear statistical fragmentation theory a 
fracture activation rate, and a corresponding fracture spacing length scale, was 
determined based on a property of the material identified as the fragmentation 
toughness and the rate of stretching leading to fiacture. The same relation will be 
used to determine the fracture spacing length scale in both orthogonal principal 
stretching directions. Namely, 

and, 
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Figure 19. illustrates independent application of linear statistical fragmentation 
theory in orthogonal principal stretching directions to implement fragmentation of 

the surface at a point. 

AFU Project Number 0950 45 



~~ ~ 

Progress Report II: Investigation of Explosively Driven Fragmentation of Metals 

The fragment area scale is then determined from, 

J a, =x,y, = 
pcc  

where, 

The nominal fragment aspect ratio is provided by, 

K 
Y 

3.3 Application to Biaxial Stretching of U6N 
Properties for uranium 6% niobium (U6N) will be used to assess the behavior of the 
relation for the fragment area scale provided in Equation (61). From the earlier 
analysis of the uranium ring data of Olsen (2000) a fragmentation toughness of 
approximatelyK/ = 60 MPa mIn was determined. This toughness value was also 
sensibly close to measured static fracture toughness values for U6N. Density and 
sound speed of p =17,407 kg/m3 and c = 2950 d s  are those reported by Zurek et al. 
(2000) for U6N. Based on the present properties for U6N the dependence of the 
fragment area scale from Equation (6 1) on the mean stretching rate provided by 
Equation (62) is shown in Figure 20. At typical stretching rates of a few times 103/s 
up to about 104/s for explosively loaded metal shells a fiagment size scale on the 
order of a square centimeter or less is predicted consistent with experimental 
observation. Increasing strain rate decreases this size scale. Increased toughness, on . 
the other hand, is predicted to increase fragment size. 

3.4 Distribution in Fragment Areas 
The catastrophic fragmentation of a rapidly stretching metal shell involves a 
complexity of rapidly opening fissures and cracks that result in a multiplicity of 
separate fragments. Individual fragments continue on outward divergent paths at the 
velocity at which breakup occurred. Although the size scale determined previously 
adequately characterizes the number density and average size of these fragments, a 
statistical distribution in fragment size is clearly observed. The objective here will be 
to apply the linear statistical fragmentation theory to characterize the distribution in 
area fragment size observed experimentally. 

In the linear theory, based on the Mott statistical premise, as constrained by the 
energy-based fiacture spacing, a statistical distribution in fracture spacing was 
determined. The resulting distribution was found to satisfactorily describe linear 
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fragmentation experiments such as the expanding ring studies. In the present 
development the assumption of independent statistical fracture in mutually orthogonal 
principal stretching directions is continued. The statistical size distribution to be 
pursued is as illustrated in Figure 21. In either the x direction, or in the orthogonal 
y direction, the statistical spacing of fractures (lines) is governed by  the linear Mott 
statistical distribution with independent length scales of xo and yo provided through 
Equation (6 1) and Equation (62), respectively. The statistical distribution in spacing 
in the x direction derived previously (Grady 2001) is, 

where p = 3 / r ( 2  / 3). An equivalent distribution applies to the spacing distribution 
in the y direction. With further analytic manipulation the integral in Equation (64) 
can be expressed as an error function if desired. 

The linear Mott distribution provided by Equation (64) is not convenient for an 
analytic determination of the distribution in fragment areas provided by the overlap of 
horizontal and vertical lines as illustrated in Figure 21. The approach pursued here 
will be to approximate the distribution fiom Equation (64) with other analytically 
tractable distributions. The distributions that will be used are the Weibull 
distribution, 

and the gamma distribution, 

The Weibull and gamma distributions with the distribution parameter n adjusted to 
provide the optimum fit are compared with the Mott distribution from Equation (64) 
in Figure 22. Values for n = 3.45 for the Weibull distribution and n = 8.0 for the 
gamma distribution yielded the observed results. The Weibull distribution clearly 
provides the closer fit to the desired Mott distribution. Both Weibull and gamma 
distributions will be carried through the analysis developing a fragment area 
distribution to provide a measure of sensitivity to the fit. 
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Figure 20. Fragment a rea  scale versus mean stretching rate based on energy 
determined characteristic fracture spacing and properties for U6N. 
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Figure 21. Illustrates independent statistical distributions of fracture spacing in 
orthogonal x and y principal stretching directions. Areas determined by 

intersecting lines will model statistical distribution in fragment a reas  and fragment 
aspect  rations. 
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Figure 22. Mott linear fragment size distribution compared with Weibull and 
Gamma distribution approximations. 
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Working first with the Weibull distribution, an expression assessing the two- 
dimensional statistical partitioning of the surface in Figure 21 is immediately written 
as a juxtaposition of Equation (65) and the corresponding distribution in they 
direction. 

Namely, 

provides the probability density distribution for fragment areas of length x and width 
y. Equation (67) can be transformed to distribution over fragment area, 

a = v ,  

and aspect ratio, 

r = x l y .  

The differential invariant, 

for the differential element through the transformation Jacobian (Buck 1965). 
Accordingly, the transformed probability density h c t i o n  is, 

Calculating the Jacobian through Equations (68) and (69), 

yields, 

The distribution over fragment area is then written as the integral expression, 
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where a, = x,y, and r, = x, l yo . 

The substitution, 

2q ln  r=r,e , 

provides, 

The integral is a modified Bessel h c t i o n  (Abramowitz and Stegun 1964) yielding 
for the area distribution based on a Weibull approximation the area distribution, 

A similar exercise using the gamma approximation provides, 

Area distributions resulting from the Weibull and the gamma distribution 
approximations to the linear Mott statistical fracture spacing distribution are shown in 
Figure 23. The Weibull approximation provides a noticeably better fit to the linear 
distribution in Figure 22 and is expected to provide the better representation of the 
area distribution based on the Mott theory. 

Comparison of the Weibull approximation to the Mott area distribution based on 
random line partitioning of the area is compared with experimental results f3om the 
dynamic near-spherical expansion fkagmentation of a metal plate in Figure 24. The 
theoretical distribution reasonably represents the measured experimental distribution. 
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Figure 23. Fragment area distributions based on Weibull and gamma distribution 
approximations to the Mott linear distribution. 
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Figure 24. A comparison of the theoretical distribution fragment a r e a s  with 
experimental results. 
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3.5 Fragment Size Distribution 
It is common in the experimental analysis and display of radiographic data of 
fragmentation of expanding metal surfaces to express the distribution in terms of a 
characteristic fracture area. For example, we will here identify the fragment size 
s = & where a is the previous fragment area defined above. The statistical 
distribution in fragment size s is a straightforward transfornation of the area 
distributions provided above. For completeness the appropriate statistical size 
distributions and their pictorial representation will be provided here. The appropriate 
transformation for Equation (78) based on the Weibull approximation to the linear 
Mott distribution leads to, 

for the statistical size distribution. In contrast, Equation (79) based on the gamma 
approximation provides, 

Both size distributions are shown and compared in Figure 25. 

3.6 Fragment Aspect Ratio Distribution 
The analysis pursued here also lends itself to a sensible assessment of the statistical 
distribution in fragment aspect ratio. Working with the distribution provided by the 
Weibull representation of the Mott distribution as written in Equation (74), substitute 
the parameters ro = xo / y o  , c = a /ao and p = r /ro . Integration over the fragment area 
variable is then written, 

Equation (82) is readily integrated providing, 

n p"-' k(r)  = - 
ro (l+p")2 

The distribution over fragment aspect ratio is shown in Figure 26. A similar 
distribution can be derived for the gamma distribution approximation to the Mott 
distribution but this development is not done here. 
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Figure 25. Fragment size distributions based on Weibull and gamma distribution 
approximations to the Mott linear distribution. 

- 

A M  Project Number 0950 56 



Progress Report II:  Investigation of Explosively Driven Fragmentation of Metals 

I .oo 

0.75 

0.50 

0.25 

0 
0 I 2 3 

+* 

Figure 26. Statistical distribution in fragment aspect ratio. 
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Section 4 Fracture Criteria 
Neither the statistical fragmentation theory of Mott, nor the energy-based theory of 
fragmentation addresses the underlying deformation that a rapidly expanding metal 
shell can sustain before onset of fracture. Other physical considerations must be 
explored in pursuing a theory of the onset of fracture leading to the statistical 
fragmentation accompanying the disintegration of the expanding shell. 

The explosive impulsive loading leads rapidly to the divergent plastic stretching and 
thinning of the metal shell. The driving explosive pressure quickly diminishes to a 
negligible level and the outward divergent inertia of the body sustains the plastic 
deformation. .The onset of fracture is dependent on the thermo-plastic deformation 
properties and the geometry of the metal shell. 

Both inertia and strain hardening of the plastic flow affect stability of the expanding 
and thinning shell. Inertia leads to acceleration stresses which stabilize small 
perturbations in the thinning process (Romero 199 1). Inertial stabilization in this 
sense, however, does not appear to play a significant role in governing the onset of 
fracture in the present application. 

Deformation hardening in the flow process appears paramount in stabilizing the 
plastic expansion and is the principal mechanism through which many materials 
sustain appreciable plastic deformation before rupture. The present dynamic 
expansion and rupture of metal shells have similarities to the extensive field of quasi- 
steady metal forming (e.g., Bartlat 1989). The present application can be profitably 
studied through exploitation of this literature. 

In essence plastic strain hardening stabilizes the thinning instabilities brought about 
by the reduction in in-plane tension caused by thinning of the stretching shell. While 
strain hardening dominates geometric softening, thinning due to continued stable 
plastic expansion ensues. Saturation of strain hardening, however, ultimately leads to 
instability and rupture. 

It will be argued that plastic strain hardening and the onset of thinning instability is 
the dominant mechanism controlling onset of fracture in U6N. An analysis and 
fracture model based on this load maximum premise is pursued here. 

Plastic thinning instabilities are not unique to the dynamic environment. Within the 
physics introduced, namely rate independent strain hardening and geometric 
softening, the onset and subsequent growth of thinning instabilities would proceed the 
same on any time scale from static to rapid dynamic. Additional physical 
considerations markedly alter the dynamic event, however. These include the 
properties of material inertia and thermal conductivity in addition to rate sensitivity of 
the flow properties. 

On the length scale of thinning instabilities, plastic dissipation in the dynamic event is 
effectively adiabatic. Plastic dissipation and the accompanying thermal softening will 
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alter the effective stress versus strain behavior. Onset of instability would 
consequently occur earlier than in the corresponding static isothermal event. 
Adiabatic thermal softening would also localize the thinning instability growth 
process, markedly changing the character of the thinning and necking region. 
Unbounded thermal localization in the thinning region is constrained by local inertia, 
however. 

The influence of adiabatic thermal softening on the onset of the tensile thinning 
instability is expected to be a second order effect. Thermal softening in the 
subsequent plastic flow during the growth of this instability under the appropriate 
loading conditions can profoundly alter the failure process, however. Along planes of 
maximum plastic shear (approximately 45 degrees with respect to the plane of the 
thinning shell) perturbations .in the local temperature or deformation can lead to 
localized adiabatic shear deformation (adiabatic shear bands) within thin planar 
regions. Rupture of the expanding shell is then accommodated by the plastic shearing 
and separation of the body along the planes of adiabatic shear. 

Adiabatic shear band failure, like fracture, is enhanced by inhomogeneities in the 
stress or deformation field. And also like fracture, adiabatic shear bands have a ~ 

propensity for propagating from a site of initiation through the plane of shear rather 
than evolving homogeneously throughout that plane. Thus, shear bands depend 
sensitively on the nature of surface defects which are the dominant source of stress 
and subsequent deformation inhomogeneity. 

Thinning instability and adiabatic shear deformation can cooperate in a more complex 
serial failure process. Thinning instability can initiate when saturation of plastic 
strain hardening is overcome by the thinning geometric softening. Adiabatic 
deformation inhomogeneities brought about during growth of the thinning region can, 
in turn, trigger local adiabatic shear deformation and complete the failure process. 

Plastic thinning instability and localization of adiabatic shear deformation are 
potential contributions to the processes of failure and rupture of dynamically 
expanding metal shells. Neither mechanism, however, is either complete, or 
necessary to the breakup process. Rupture ultimately requires the breaking of 
molecular bonds and the development of damage within the deforming material. In 
the fracture of metal this process has been shown to require a level of plastic 
deformation combined with a state of tensile stress triaxiality. This underlying 
physics has been noted from at least the early works of Mott and has been addressed 
in considerable detail by later workers (e.g., Hancock and Mackenzie 1976). This 
feature of fracture is recognized but will not be pursued in detail in the present 
development of a failure criterion. 

4. I Biaxial Strain Criterion 
A theory and analytic model appropriate to the present dynamic fragmentation 
application is sought to predict the onset of fracture of a generally biaxial stretching 
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sheet element of metal as illustrated in Figure 27. Plastic stretching is brought about 
by an outward expansion velocity Y imparted to the body. Current thickness of the 
element is t while in-plane principal plastic stretching rates are Bx and By,  
respectively. Equivalent plastic strain in the element is provided through the relation, 

F = & [ ( B x - B y ) . + ( & , , - B z )  2 +(Bz-Bx)2 ]  . 
(84) 

Through-the-thickness stretching rate iz is related to the current thickness t of the 
element through the relation Bz = i/t  . The present problem is adequately addressed 
by considering motions characterized by the constant proportionality a of the in- 
plane stretching rates, 

Special cases, of course, include spherical expansion ( a = 1 ), uniaxial cylindrical 
expansion ( a  = 0 ), and the expanding ring ( a = - 1/2 ). 

Combining Equation (84) and Equation (85) along with the incompressibility 
condition, 

& x + & y + B , = o  , 

yields, 

(85) 

4 (1+a+a2). 
€2 - (87) 

Also, equivalent plastic strain rate is compared with common engineering estimates 
of the strain rate in Figure 28, illustrating the latter are not appropriate in the present 
application. 

The in-plane, plane stress (a, = 0)  effective stress is provided by, 

7- 

.* . 
1;; 

where o.~  and a,, are the in-plane principal stresses. In the present development 
stresses and strains are thickness averages through the sheet and only in-plane stresses 
are non-zero. For the corresponding proportional loading to the elastic limit, 

l+av 
0, =E- l - v 2  ’ (89) 
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Figure 27. Biaxial expanding element of metal plate with current thickness f due  
to imparted outward velocity V. Principal in-plane plastic stretching rates are 

id e n  t ified . 
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Figure 28. The ratio of equivalent plastic stretching rate to the thinning rate is 
shown by the solid curve. This ratio relative to the radial expansion rate is also 

shown for an expanding ring, expanding sphere, and a uniaxial expanding 
cy1 i nd e r. 
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where E is Young's modulus and v is Poisson's ratio. The stress ratio is then, 

For a von Mises yield condition, 

Y 
a x = J 1 - p + p z  , 

where Y is the yield stress and P is the stress ratio in Equation (91). Equation (88) 
for a von Mises material gives 5 = Y . 
A power-law hardening representation for the adiabatic effective stress versus strain 
behavior of the material of concern will be assumed of the form, 

E = A F n ,  (94) 
where both the coefficient A and the exponent iz may, in general, depend on the 
biaxial proportionality parameter a . An effective in-plane tension T is provided by 
the product of the effective stress and the current thickness, 

T = 5 t  = AEnt . (95) 
In the present model, onset of fracture is assumed to occur according to the maximum 
load instability criterion; namely, when the tension T(E) achieves a maximum under 
the proportional deformation loading. This instability criterion has been found to 
satisfactorily reproduce results of more detailed stability analyses (e.g., Romero 
199 1). The maximum of T(E) is identified from the differential, 

dT = nAEn-'tdE + AEndt . 
From Equation (87), 

E = - f (a)&, , 

where f (a) is identified in the equation and, 

dE = - f (a)d&, = - f (a )d t / t  . 
Combining Equation (96) and Equation (98) and equating the differential to zero 
yields for the fracture criterion, 

(96) 

(97) 
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4 ( 1 + a + a 2 )  
Ff = f(a)n(a) = - n ( a )  Y J 3 (1+a)2 

(99) 

where the possible dependence of n on the biaxial proportionality parameter a is 
noted. Identifying through-the-thickness strain as E, = lnt/to , 

t f - - (a)  (100) - e  - 
t0 

For specific geometries of interest zero plastic volume change requires that, 

(101) rftfw = t K ( a )  
0 0  3 

where ~ ( a )  = 1/2, 1, and 2 for an expanding sphere, uniaxial cylinder, and ring, 
respectively. The radial expansion at failure is then, 

In the absence of further data it is sensible to propose tlat the power-law hardening 
coefficient n in Equation (94) be independent of the proportionality parameter a and 
use the expanding ring data of Olsen (2001) for U6N to establish the coefficient n . 
The data of Olsen data indicate that 
n z 0.13. 

z 1.3 and Equation (102) provides 

Through-the-thickness thinning, radial expansion and equivalent strain at fracture for 
U6N based on the expanding ring data are shown in Figure 29 as a function of 
biaxiality. The extent of thinning at fracture is independent of biaxiality. Both 
equivalent strain and radial expansion reduce markedly as biaxiality approaches 
spherical expansion. 

A comment on the load maximum localization criterion is appropriate. It has been 
noted (e.g., Storen and Rice 1975; Needleman and Tvergaard 1992) that only for 
a I 0 is there a line of zero extension determining the orientation of the thinning 
localization. For a > 0 a line of zero extension does not exist. Nonetheless, 
deformation localization when both in-plane principal strains are positive is observed. 
Romero (1 991) has demonstrated the instability of the Levy-von Mises equations of a 
biaxially stretching ( a = 1 ) perfect plastic plate. The load maximum criterion will be 
used here to quantify localization onset. 

Dependence of the power-law plastic hardening relation in Equation (94) on the strain 
path a is due, for example, to deformation softening brought about by the growth of 
micro void damage. The different strain paths imply in turn different states of stress 
triaxiality. Stress triaxiality equals 1/3 for a = -1 / 2  , for example, and equals 213 for 
a = 1. Micro void damage growth is known to be a sensitive function of stress 
triaxiality (e.g., Hancock and Mackenzie 1976). 
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Figure 29. Biaxial fracture equivalent strain, thinning and radial expansion based 
on expanding ring fracture data of Olsen (2000) on U 6 N  and the Considiere 

instability criterion. 
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Nonetheless, load maximum and the concomitant plastic localization is chosen here 
as the criteria for failure and fracture of the U6N. There is some supporting evidence 
for this selection. First, the expanding ring data on U6N (Olsen 2001) shows clear 
evidence of plastic localization preceding fracture. Arrested necking regions are 
observed in a number of recovered fragments. Extension fracture is observed to 
occur in necks soon after localization begins. The increase in stress triaxiality within 
plastic necks is expected to accelerate the fracture process as is observed. Second, the 
predicted reduced strain to fracture in the range of 0 < a < 1 (see Figure 29) is also 
not inconsistent with available data. 
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Section 5 Analytic Model 
A principal objective of the present study is to develop an operational analytic model 
for the prediction of failure-through-fracture, and the detailed features of the breakup 
process of an explosively driven metal shell. This operational model is intended to 
work serially in conjunction with either a computational solution or another 
operational model, such as the Gurney theory (Grady 2001), which accounts for the 
explosive loading and acceleration of the metal shell. The operational fracture and 
fragmentation model is an uncoupled post-processing model in the sense that no 
aspect of the model feeds back to the loading and acceleration solution. Output from 
the explosive loading and acceleration solution, on the other hand, provides crucial 
input to the fracture failure and fragmentation model. 

Application of the model will be focused here principally on problems mimicking, in 
the language of Gurney, the open-faced sandwich or the closed sandwich geometries. 
The former involves a relatively modest thickness of explosive (perhaps a few 
centimeters) in intimate contact with the thin metal shell. The latter geometry 
considers two thin shells of metal which encloses the explosive. The shells will be 
curvilinear in construction such that an inner and outer shell will be apparent. These 
two geometries differ from a spherical or closed-cylinder metal shell fully loaded 
with explosive in that the duration of explosive shock and high-pressure loading will 
be quite short compared to the closed shell geometries. The model is certainly 
expected to be applicable to the latter geometries. It is believed, however, that the 
modes of fracture failure in the fully loaded shell will be quite different from the 
present sandwich geometries of interest. 

Detonation of the explosive leads to shock loading and outward acceleration of the 
metal shell. (For the closed sandwich geometry, the inner shell will be concurrent11 
driven inward. Failure and breakup of the outer shell is of principal interest.) 
Detonation of the explosive is commonly initiated at a specific point or points in the 
geometry and loading throughout most of the metal shell occurs through a sweeping 
obliquely-incident detonation wave. Peak pressures in the shock wave initially 
coupled into the metal can range over approximately 30-60 GPa. Outward 
acceleration to velocities in the kilometer per second range is rapid, occurring over a 
few microseconds. Outward motion of the metal shell is divergent due to the 
curvilinear geometry of the shell and explosive resulting in plastic thinning of the 
shell. Driving pressures also drop promptly due to the rapid expansion and 
decompression of the explosive products. The explosive shock loading and 
acceleration is calculated in detail through computational simulations of the event. In 
Gurney solutions momentum and energy balance determine the imparted motions 
(Grady 2001). 

There are concerns that initial explosive shock loading leads to marked metallurgical 
changes of the shell metal which must be accounted for in the failure and 
fragmentation process. This possible effect has not yet been fully demonstrated but is 
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not of consequence to the model developed here. Material properties relevant to the 
shocked material can be entered into the model if needed. 

In principle, metal shells of interest will have complex geometries ranging from 
primarily cylindrical curvilinearity in certain regions to near spherical curvilinearity 
in others. Thickness variations may also be present. Obstructions or barriers to the 
motion of the shell can locally restrict flow causing gradients in the kinetics imparted 
by the explosive. 

Consequently, the operational model determining fracture failure and fragmentation 
applies at a point on the shell and application of the model requires a determination at 
a predetermined grid of points or, at a minimum, at points of specific concern. 

Failure through fracture in the model is governed by the cumulated equivalent plastic 
strain identified in the previous section. Although a measure of equivalent plastic 
strain modulated by the stress triaxiality (the ratio of the mean stress to the equivalent 
shear stress) could certainly be implemented into the model, this complication will 
not be included here except in the simplest sense. During the initial shock 
compression and acceleration a plastic strain of the order of ten percent is incurred. 
This plastic strain is assumed to not contribute to either microscopic fracture damage 
or to the deformation hardening saturation leading to thinning localization. This 
assumed feature of the model is readily implemented by discounting equivalent 
plastic strain accumulated when stress triaxiality is negative. (The convention with 
mean pressure negative in compression is assumed.) 

Ignoring the plastic strain generated during the strong shock and release process is not 
done here without a certain level of discomfort. It is difficult to imagine that the 
shock-induced strain does not contribute to some extent to the deformation hardening, 
the saturation of which leads ultimately to load maximum and localization. 
Nonetheless, load maximum localization is sensibly consistent with the available 
failure data on U6N and will be used in this development as the fracture failure 
criteria. As noted previously, features of the fragmentation model do not depend on 
the form of the failure criteria. An improved failure model could be readily 
implemented at a later time if warranted. 

Therefore, fracture failure at a computational point of the explosively loaded metal 
shell is provided by Equation (99). The material function n(a) appropriate to U6N is 
applied. The kinematic solution, either through a Gurney calculation, or from a 
numerical simulation, must provide the history of the equivalent strain and the ratio 
Q of the principal in-plane stretching rates. 

MathCAD programs developed based on both the Gurney theory and the 
computational simulation of the explosive loading are provided in the appendix. 
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5.1 The Gurney Model 
In the Gurney model development the analysis focuses on a curvilinear metal shell 
eIement of an explosive-metal system with cylindrical symmetry about an axis of 
revolution. Metal shell and explosive thicknesses and densities are entered. A 
Gurney velocity characterizing the explosive energy is also entered and the 
appropriate Gurney equation (Grady 2001) is used to calculate the imparted 
expansion velocity to the element assumed normal to the shell element surface. 

An initial polar and azimuthal arc radius, rzo and r+, respectively, are input and, with 
the calculated expansion velocity, used to calculate in-plane strains and strain rates in 
the polar and azimuthal directions. Based on the load maximum failure parameter 
n(a) the time after launch of the shell element is-advanced until the equivalent strain 
failure criteria is satisfied. The time and displacement at failure, along with strains 
and strain rates, are then output and stored for further calculations. 

Metal density, sound speed, and fragmentation toughness are entered and used to 
calculate the characteristic fracture spacing in the polar and azimuthal directions. 
Average fiagment area, fragment size, and distribution properties are then calculated. 

Lastly, features of crack-opening at a specified time after fracture are determined, 
including the total crack-opening crack area and statistical features of the widths of 
cracks. 

5.2 The Post-Processing Model 
The post-processing model considers a region of a cylindrically symmetric curvilinear 
metal shell in which the motion of the shell is specified by other means. These means 
could include a computational simulation of the explosive-metal event in which 
motions of the region of the shell of concern are determined fiom the position and 
velocity histories of tracer points selectively positioned in the metal shell. 

For the example included in the appendix, realistic analytic relations to describe the 
shell geometry and motions are used rather than a computer simulation. Within the 
shell element of interest the position and velocity history of three points lying on an 
in-plane polar ray are determined. The azimuthal strain and strain rate at the central 
point is readily calculated fiom the radial position and velocity at this point. Polar 
strain and strain rate are approximated from the motion through the separation and 
rate of separation of the tracer points. 

Failure of the element and the subsequent fiagmentation and crack-opening 
displacement features are calculated in the same way as in the Gurney model. 
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5.3 Comparison with Fragmentation Experiments 
Experiments have recently been performed at the Sandia National Laboratories 
Impact Facilities which offer an opportunity for testing the present preliminary 
engineering model. In these experiments a tube of U6N metal several inches long, 
with initial O.D. =0.75" and I.D. = 0.50", was subjected to an internal radial 
impulsive loading through the impact of stationary and high velocity plastic cylinders 
near the tube center. Rapid radial expansion with a central radial velocity of 
approximately 200-250 m/s led to dynamic fracture and fragmentation near the 
central region of the tube. Three images of the tube at successive stages through the 
fra,gnentation process shown in Figure 30 illustrate the failure behavior. 

The present rather cursory comparison worked within the framework of the post- 
processing model-an example of which is provided in the appendix. The initial 
ellipticaI geometry provided in the model was used to approximate a tube by making 
the z axis adequately long. Diameter of the initial ellipse was selected as the average 
from the tube I. D. and 0. D. A radial expansion velocity of 250 m / s  was used. The 
radial velocity profile was changed from the functional form provided in the example 
in the appendix to better describe the finite radial bulging seen in the high-speed 
photography (Figure 30). In particular7 the radial velocity was varied quadradically 
from 250 m/s at the center to zero at an axial distance of 10 mm. Standard properties 
for U6N as described in this text were otherwise maintained. 

CaIcuIation of fragmentation was performed at a point 5 mm from the tube centerline. 
Failure was predicted to occur at 5.6 ps after start of initial motion with a radial 
displacement of 1.03 mm. This prediction is fully consistent with the high-speed 
photography in which striations indicative of fiacture initiation are observed at a 
center-line radial expansion of about 2.0-2.5 mm. 

Predicted strain rates at onset of fragmentation are 2.0 x 104/s in the azimuthal 
direction and 3.6 x 103/s in the polar direction. Corresponding azimuthal and polar 
fracture spacings are calculated to be 3.3 and 11 .O mm, respectively. Comparisons 
with the middle and lower photographs in Figure 30 show the predictions are in 
sensible accord with the test. 

LastIy, the final photograph in Figure 30 occurs approximately 20 ps after fracture 
onset. At this time the post-process model calculates a crack opening area fraction of 
34% with an average azimuthal crack opening width of 2.1 mm and a statistical range 
over about 1 .O to 3.2 mm. Crack opening predictions are also reasonably borne out 
by the late-time photograph in Figure 30. 
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Figure 30. Selected images of SNL U6N tube fragmentation test  DU-2. 
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Section 6 Discussion and Conclusions 
During the current report period key features regarding the physics and statistics of 
dynamic fragmentation, within the scope of the approaches pursued initially by Mott 
and later by the present author, have fallen nicely into place. The largely statistical 
ideas of Mott, and the later energy-based concepts, are shown here to be sensibly 
compatible. 

Based on very reasonable assumptions this fragmentation theory is extended to the 
general dynamic breakup of an expanding metal shell. The fiagmentation theory is 
joined with a physical model for the prediction of the amount of expansion strain the 
shell can accommodate before onset of fracture. With the joining of the theories quite 
general calculations regarding the statistical temporal and spatial breakup of the shell 
can be made. 

Preliminary engineering codes have been pursued to exercise the failure and 
fragmentation models. Demonstration calculations with these codes have been 
performed. 

Continued efforts need to focus in further detail on some of the key fracture and 
fragmentation phenomena essential to the underlying model physics. This addition 
study will be nicely driven by new experimental methods that are being pursued. 

Also, additional development and verification of the engineering codes will be 
needed. This effort will also benefit from emerging experimental results. 
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Section 8 Appendix 
The present appendix includes the MathCAD equations and examples for the 
engineering fragmentation models based on Gurney theory explosive loading 
concepts and on post-processing of a computational simulation of the explosive 
loading event. 
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1. Gurney Solution 
Calculation of the velocity vb of the exterior plate Mb. Planar open sandwich geometry is 
assumed. Explosive Cb in front of the stationary radius is first calculated. Then the velocity V 
through Gurney equation. 

Inputs: 
Explosive and metal densities and thicknesses 
plus Gurney Velocity VG -= SQRT (2E). 

-3 

3 

-3 

pa := 15000 

pb := 17407 

pc := 1600 

ta := 4-10 

tb := 6.10- 

tc := 40.10 

VG := 1300 

Calculations: 

c:=p - t  c c  

c = P C t C  * 

i / 
Ma = Pat, 

I 
I 
I 
I 
I 
I 
I 
I 
I 

b,j ' 'b 

\ ti 
Stationary 
Radius 

C + 2-Ma 
cb :="( ) 2 C + M a + M b  

VG 
VL := 

cb 0.5 
C 

Tb := - 

Solutions: 
The launch velocity VL of plate b while Tb is relative thickness of explosive driving plate b. 

VL = 620.777 Tb = 0.403 



<=? .. 

'r 

II. Strain-to-Failure Solution 
Failure of the expanding surface element is calulated through a load maximum criterion. Strain, 
strain rate, strain biaxiality, element displacement and failure time a r e  calculated. 

Inputs: 
Load maximum failure parameter n(a). A more complex model could include triaxiality 
parameter throuqh a dependence of n(a) on a. 

na := 0.13 

Element launch velocity: Either input a velocity or accept velocity calculated in Model Section I. 

VL = 620.777 

Divergent flow of the outward accelerated is determined by: 

Polar Arc Radius (rxo, rx) Azimuthal Arc Radius (rw, r+) 

rXo := 0.20 r+o := 0.15 

Thinning gradient parameters. This part of model contributes 
to the polar straining. 

I 
Time after launch. I I 

- 6  t := 19-10 

Calculations: 
Increment time-after-launch until failure achieved (F = 1). 

rX := rXo + V c t  r+ := r+o + VL-t dL := V c t  

Solutions: 
Failure corresponds to F = 1 while TL and DL are  the corresponding time and displacement. 

- 6  F =  1 tL = 1 9 ~  10 dL = 0.012 

Strain, strain rate and strain biaxiality at failure. 

a = 0.764 
3 = 0.057 E+ = 0.076 = 2.931 x 10 E'+ = 3 . 8 3 7 ~  10 



111. Fragment Size and Spacing 
Size and statistics of fragmentation a t  failure in surface element based on energy (fracture toughness) 
criterion for fracture spacing. Provides average polar and azimuthal fracture spacing. fragment 
average surface a rea  and aspec t  ration and distribution. 

Inputs: 
Fragmentation Toughness (Kf) for shell metal. Also density (note density from Section I = pb) 
and sound speed  of metal a r e  inputs to fracture spacing length scale. 

elm := 2950 pm := pb 
6 I$- := 60.10 

Calculations: 2 - 

a, := x ex a0.05 := 0.41.a, x 4  

xay := & '0.05 := 6 
Solutions 

Polar and azimuthal spacing. 

xx = 0.012 X$ = 0.010 

Fragment a rea  size scale and,  5% and 95% area  cut-off. 

- 6  a, = 128.509~ 10 

Azimuthal 
Direction 

a = x.po  
/ 

Characteristic fragment size and, 
5% and 95% area  cut-off. 

Xav = 0.01 1 



IV. Crack Opening Displacement 
Failure and continued expansion leads to continued opening of fractures and f inures .  Calculations 
a r e  provided for the fraction of open area  and the size and distribution of crack width as a function of 
time after failure. 

Inputs : 
Time from explosive launch to failure is calculated above. Input time after failure here. 

6 
tf := 10.10- 

Calculations: 
Fractions of crack opening in polar and azimuthal directions a r e  calculated a t  time tf: 

E'+'tf 
f+ := 

E', - tf 
f* := 

1 +E',.tf 1 + E'qtf 
Which provides fraction of crack opening area a t  time b. 

f,+(tf) := f, + f+ - f -f ,+  
The mean gap opening in a t  time in polar and azimuthal directions along with 5% and 95% 
distribution limits is provided through: 

Solutions: 
Crack opening area fraction and corresponding time after failure and after launch. 

- 6  - 6  f,+(F) = 0.064 9 = 1 0 . 0 ~  10 tL+tf = 29.0~ 10 

Gap size and distribution characteristics. 

- 6  - 6  
Wxave = 534.3 x 10 w + ~ ~ ~  = 584.5 x 10 

- 6  6 ~ ~ 0 . 0 5  = 26 1.7 x 10 ~$0.05 = 286.3 x 10- 

- 6  - 6  ~ ~ 0 . 9 5  = 832.4 x 10 ~ 4 o . g ~  = 910.5 x 10 

Azimuthal 
Direction 



Post-Processing Model 
for 

Failure and Fragmentation 
of an 

Explosive Driven 
Curvilinear Metal Shell 



I. Motion of Element 
The metal shell is assumed to be a n  ellipse of revolution about the z axis. An analytic velocity history 
is assigned to all points on the shell. T h e  solution provides the position and velocity history of a point 
and two neighboring points for the purpose of estimating the asimuthal and polar in-plane stretching 
rates 

Inputs: 
Parameters for the geometry and velocity history of the metal shell a r e  input. 

a, := -15 bo := .30 va := 1400 vb := 1400 T := 3*10-6 

The point of the shell of interest and polar distance to right and left neighboring points a r e  input. 

$:=.I5 6 :=.01 n : = 1 7 2 . . 3  P 

zo(n) := "p + (n - 2 ) 3 ,  

The time s tep and number of time s teps  
a re  input. 

- 6  m:=0,1..20 6t:= 1-10 

t(m) := m 6 t  

a0 

r 

Z b0 

Calculations: 
Position and velocity of element points (n) a t  all time 
s teps  (m) are calculated for point p(m,n). 

4 f 

Vz(m,n) := 1 - e  Vr(m,n) := ro(n)--- 1 - e  
aO 

z(m,n) := zo(n)- [ 1 +-. vb[  t(m) - 5- ( 1 - e ?)]I 
b0 

r(m,n) := ro(n) [ 1 + -- .a[ t(m) - T- [ 1 - e ?)]I 
aO 

Z 



Increment time-after-launch until failure achieved (F = 1). Then calculate strain biaxiality, and time and 
displacement to failure. 

3 2 E'X 
tL := t(m) dL := J(r(m,2) - rJ2))- + (z(m,2) - ~ ~ ( 2 ) )  

F : = E ~ + E  > ncL 
a := - ( P -  

Solutions: 
Failure corresponds to F = 1. 

F = l  

t and dL are  the corresponding time and displacement. 

tL = 1 3 x  IO- dL = 0.014 

Polar and azimuthal strain, strain rate and strain biaxiality a t  failure. 

3 3 
E~ = 0.049 E+ = 0.09 ~ ' 4  = 8.422 x 10 = 4.736 x 10 

a = 0.562 



C" 

i '  

ill. Fragment Size and Spacing 
Size and statistics of fragmentation a t  failure in surface element based on energy (fracture toughness) 
criterion for fracture spacing. Provides average polar and azimuthal fracture spacing, fragment 
average surface area and aspect ration and distribution. 

Inputs: 
Fragmentation toughness (Kf) for shell metal. Also density and sound speed  of metal a r e  inputs to 
fracture spacing length scale. 

pm := 17407 clrn := 2950 
6 Kf :=' 60- 1 0 

Calculations: 
2 - 2 - 

c c  

e- 

.-- 

Solutions 
Polar and azimuthal spacing. 

- 3  - 3  xn = 9.006 x 10 X+ = 6 . 1 3 6 ~  10 

Azimuthal 
Direction 

Fragment area size scale and, 5% and 95% area  cut-off. 

- 6  - 6  -6  a, = 55 .258~  10 a0.05 = 22.656 x 10 aOeg5 = 92.834 x 10 

Characteristic fragment size and, 5% and 95% area cut-off. 

- 3  - 3  - 3  
Xav = 7.434 x 10 ~ 0 . 0 5  4.76 x 10 ~0.95 = 9.635 x 10 



IV. Crack Opening Displacement 
Failure a n d  continued expansion leads to continued opening of fractures and  f inures .  Calculations 
a r e  provided for the fraction of open area  and the size and distribution of crack width as a function of 
time after failure. 

Inputs: 
Time from explosive launch to failure is calculated above. Input time after failure here. 

6 
tf := 10-10- 

Calculations: 
Fractions of gap  opening in polar and azimuthal directions a r e  calculated a t  time tf: 

E'Q'tf 

1 + E'Q'tf 
f+ := 

E',-% 

I + &',.tf f, := 

Which provides fraction of g a p  area  a t  time 4. 
fn&) :=f,+f+-f .f n 4  

The mean crack opening opening in a t  time t in polar and azimuthal directions along with 5% and 95% 
distribution limits is provided through: 

Solutions: 
Crack opening area fraction and corresponding time after failure and after launch. 

-6  -6 f,Q(tf) = 0.119 tf = 1o.ox 10 tL+tf = 2 3 . 0 ~  10 

Crack opening size and distribution characteristics. Azimuthal 

6 
\ v Q ~ ~ ~  = 759.6 x IO- 

-6  6 ~ ~ 0 . 0 5  = 372 x IO- 

6 wnave = 627 x IO- 

~ ~ 0 . 0 5  = 307.1 x 10 

-3 
~ 4 0 . 9 5  = 1.2 x 10 

6 
~ ~ 0 . 9 5  = 976.7 x IO- 

Direction 
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